Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Clin Microbiol Infect ; 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2299659

ABSTRACT

BACKGROUND: Pandemic preparedness is critical to respond effectively to existing and emerging/new viral pathogens. Important lessons have been learned during the last pandemic at various levels. This revision discusses some of the major challenges and potential ways to address them in the likely event of future pandemics. OBJECTIVES: To identify critical points of readiness that may help us accelerate the response to future pandemics from a clinical microbiology laboratory perspective with a focus on viral diagnostics and genomic sequencing. The potential areas of improvement identified are discussed from the sample collection to information reporting. SOURCES: Microbiologists and researchers from five countries reflect on challenges encountered during the COVID-19 pandemic, review published literature on prior and current pandemics, and suggest potential solutions in preparation for future outbreaks. CONTENT: Major challenges identified in the pre-analytic and post-analytic phases from sample collection to result reporting are discussed. From the perspective of clinical microbiology laboratories, the preparedness for a new pandemic should focus on zoonotic viruses. Laboratory readiness for scalability is critical and should include elements related to material procurement, training personnel, specific funding programmes, and regulatory issues to rapidly implement "in-house" tests. Laboratories across various countries should establish (or re-use) operational networks to communicate to respond effectively, ensuring the presence of agile circuits with full traceability of samples. IMPLICATIONS: Laboratory preparedness is paramount to respond effectively to emerging and re-emerging viral infections and to limit the clinical and societal impact of new potential pandemics. Agile and fully traceable methods for sample collection to report are the cornerstone of a successful response. Expert group communication and early involvement of information technology personnel are critical for preparedness. A specific budget for pandemic preparedness should be ring-fenced and added to the national health budgets.

2.
Front Immunol ; 14: 1152522, 2023.
Article in English | MEDLINE | ID: covidwho-2280591

ABSTRACT

Introduction: Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods: Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results: During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion: Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.


Subject(s)
COVID-19 , Male , Female , Humans , COVID-19/diagnosis , SARS-CoV-2 , Uganda/epidemiology , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M , Immunoglobulin A
3.
Front Immunol ; 14: 1113194, 2023.
Article in English | MEDLINE | ID: covidwho-2274909

ABSTRACT

There is an urgent need for better immunoassays to measure antibody responses as part of immune-surveillance activities and to profile immunological responses to emerging SARS-CoV-2 variants. We optimised and validated an in-house conventional ELISA to identify and quantify SARS-CoV-2 spike- (S-), receptor binding domain- (RBD-), and nucleoprotein- (N-) directed IgG, IgM, and IgA binding antibodies in the Ugandan population and similar settings. Pre- and post-pandemic specimens were used to compare the utility of mean ± 2SD, mean ± 3SD, 4-fold above blanks, bootstrapping, and receiver operating characteristic (ROC) analyses in determining optimal cut-off optical densities at 450 nm (OD) for discriminating between antibody positives and negatives. "Limits of detection" (LOD) and "limits of quantitation" (LOQ) were validated alongside the assay's uniformity, accuracy, inter-assay and inter-operator precision, and parallelism. With spike-directed sensitivity and specificity of 95.33 and 94.15%, respectively, and nucleoprotein sensitivity and specificity of 82.69 and 79.71%, ROC was chosen as the best method for determining cutoffs. Accuracy measurements were within the expected CV range of 25%. Serum and plasma OD values were highly correlated (r = 0.93, p=0.0001). ROC-derived cut-offs for S-, RBD-, and N-directed IgG, IgM, and IgA were 0.432, 0.356, 0.201 (S), 0.214, 0.350, 0.303 (RBD), and 0.395, 0.229, 0.188 (N). The sensitivity and specificity of the S-IgG cut-off were equivalent to the WHO 20/B770-02 S-IgG reference standard at 100% level. Spike negative IgG, IgM, and IgA ODs corresponded to median antibody concentrations of 1.49, 3.16, and 0 BAU/mL, respectively, consistent with WHO low titre estimates. Anti-spike IgG, IgM, and IgA cut-offs were equivalent to 18.94, 20.06, and 55.08 BAU/mL. For the first time, we provide validated parameters and cut-off criteria for the in-house detection of subclinical SARS-CoV-2 infection and vaccine-elicited binding antibodies in the context of Sub-Saharan Africa and populations with comparable risk factors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Uganda , Immunoglobulin A , Antibodies, Viral , Immunoglobulin G , Enzyme-Linked Immunosorbent Assay , Immunoglobulin M
4.
iScience ; 26(3): 106230, 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2239960

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and infect individuals. The exterior surface of the SARS-CoV-2 virion is dominated by the spike protein, and the current work examined spike protein biochemical features that have changed during the 3 years in which SARS-CoV-2 has infected humans. Our analysis identified a striking change in spike protein charge, from -8.3 in the original Lineage A and B viruses to -1.26 in most of the current Omicron viruses. We conclude that in addition to immune selection pressure, the evolution of SARS-CoV-2 has also altered viral spike protein biochemical properties, which may influence virion survival and promote transmission. Future vaccine and therapeutic development should also exploit and target these biochemical properties.

5.
Emerg Infect Dis ; 29(1): 224-226, 2023 01.
Article in English | MEDLINE | ID: covidwho-2233527

ABSTRACT

We describe a cluster of COVID-19 breakthrough infections after vaccination in Kyamulibwa, Kalungu District, Uganda. All but 1 infection were from SARS-CoV-2 Omicron strain BA.5.2.1. We identified 6 distinct genotypes by genome sequencing. Infections were mild, suggesting vaccination is not protective against infection but may limit disease severity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Uganda/epidemiology , Breakthrough Infections
6.
Science ; 378(6615): eabq5358, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2029459

ABSTRACT

Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.


Subject(s)
COVID-19 , Epidemiological Monitoring , Pandemics , SARS-CoV-2 , Africa/epidemiology , COVID-19/epidemiology , COVID-19/virology , Genomics , Humans , SARS-CoV-2/genetics
8.
Microbiol Spectr ; 10(4): e0151422, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909617

ABSTRACT

Based on its predicted ability to affect transmissibility and pathogenesis, surveillance studies have highlighted the role of a specific mutation (P681R) in the S1/S2 furin cleavage site of the SARS-CoV-2 spike protein. Here we analyzed A.23.1, first identified in Uganda, as a P681R-containing virus several months prior to the emergence of B.1.617.2 (Delta variant). We performed assays using peptides mimicking the S1/S2 from A.23.1 and B.1.617 and observed significantly increased cleavability with furin compared to both an original B lineage (Wuhan-Hu1) and B.1.1.7 (Alpha variant). We also performed cell-cell fusion and functional infectivity assays using pseudotyped particles and observed an increase in activity for A.23.1 compared to an original B lineage spike. However, these changes in activity were not reproduced in the B lineage spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, this substitution needs to occur on the background of other spike protein changes to enable its functional consequences. IMPORTANCE During the course of the SARS-CoV-2 pandemic, viral variants have emerged that often contain notable mutations in the spike gene. Mutations that encode changes in the spike S1/S2 (furin) activation site have been considered especially impactful. The S1/S2 change from proline to arginine at position 681 (P681R) first emerged in the A.23.1 variant in Uganda, and subsequently occurred in the more widely transmitted Delta variant. We show that the A.23.1 spike is more readily activated by the host cell protease furin, but that this is not reproduced in an original SARS-CoV-2 spike containing the P681R mutation. Changes to the S1/S2 (furin) activation site play a role in SARS-CoV-2 infection and spread, but successful viruses combine these mutations with other less well identified changes, occurring as part of natural selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Furin/genetics , Furin/metabolism , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Uganda
9.
Elife ; 112022 06 14.
Article in English | MEDLINE | ID: covidwho-1893302

ABSTRACT

Background: Detailed understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) regional transmission networks within sub-Saharan Africa is key for guiding local public health interventions against the pandemic. Methods: Here, we analysed 1139 SARS-CoV-2 genomes from positive samples collected between March 2020 and February 2021 across six counties of Coastal Kenya (Mombasa, Kilifi, Taita Taveta, Kwale, Tana River, and Lamu) to infer virus introductions and local transmission patterns during the first two waves of infections. Virus importations were inferred using ancestral state reconstruction, and virus dispersal between counties was estimated using discrete phylogeographic analysis. Results: During Wave 1, 23 distinct Pango lineages were detected across the six counties, while during Wave 2, 29 lineages were detected; 9 of which occurred in both waves and 4 seemed to be Kenya specific (B.1.530, B.1.549, B.1.596.1, and N.8). Most of the sequenced infections belonged to lineage B.1 (n = 723, 63%), which predominated in both Wave 1 (73%, followed by lineages N.8 [6%] and B.1.1 [6%]) and Wave 2 (56%, followed by lineages B.1.549 [21%] and B.1.530 [5%]). Over the study period, we estimated 280 SARS-CoV-2 virus importations into Coastal Kenya. Mombasa City, a vital tourist and commercial centre for the region, was a major route for virus imports, most of which occurred during Wave 1, when many Coronavirus Disease 2019 (COVID-19) government restrictions were still in force. In Wave 2, inter-county transmission predominated, resulting in the emergence of local transmission chains and diversity. Conclusions: Our analysis supports moving COVID-19 control strategies in the region from a focus on international travel to strategies that will reduce local transmission. Funding: This work was funded by The Wellcome (grant numbers: 220985, 203077/Z/16/Z, 220977/Z/20/Z, and 222574/Z/21/Z) and the National Institute for Health and Care Research (NIHR), project references: 17/63/and 16/136/33 using UK Aid from the UK government to support global health research, The UK Foreign, Commonwealth and Development Office. The views expressed in this publication are those of the author(s) and not necessarily those of the funding agencies.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Kenya/epidemiology , Phylogeny , Retrospective Studies , SARS-CoV-2/genetics
10.
PLoS One ; 17(5): e0265334, 2022.
Article in English | MEDLINE | ID: covidwho-1833638

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the performance of seven antigen rapid diagnostic tests (Ag RDTs) in a clinical setting to identify those that could be recommended for use in the diagnosis of SARS-CoV-2 infection in Uganda. METHODS: This was a cross-sectional prospective study. Nasopharyngeal swabs were collected consecutively from COVID-19 PCR positive and COVID-19 PCR negative participants at isolation centers and points of entry, and tested with the SARS-CoV-2 Ag RDTs. Test sensitivity and specificity were generated by comparing results against qRT-PCR results (Berlin Protocol) at a cycle threshold (Ct) cut-off of ≤39. Sensitivity was also calculated at Ct cut-offs ≤29 and ≤33. RESULTS: None of the Ag RDTs had a sensitivity of ≥80% at Ct cut-off values ≤33 and ≤39. Two kits, Panbio™ COVID-19 Ag and VivaDiag™ SARS-CoV-2 Ag had a sensitivity of ≥80% at a Ct cut-off value of ≤29. Four kits: BIOCREDIT COVID -19 Ag, COVID-19 Ag Respi-Strip, MEDsan® SARS-CoV-2 Antigen Rapid Test and Panbio™ COVID-19 Ag Rapid Test had a specificity of ≥97%. CONCLUSIONS: This evaluation identified one Ag RDT, Panbio™ COVID-19 Ag with a performance at high viral load (Ct value ≤29) reaching that recommended by WHO. This kit was recommended for screening of patients with COVID -19-like symptoms presenting at health facilities.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , Cross-Sectional Studies , Diagnostic Tests, Routine , Humans , Prospective Studies , Sensitivity and Specificity , Uganda/epidemiology
11.
Int J Infect Dis ; 112: 281-287, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654535

ABSTRACT

INTRODUCTION: Serological testing is needed to better understand the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Rapid diagnostic tests (RDTs) have been developed to detect specific antibodies, IgM and IgG, to the virus. The performance of 25 of these RDTs was evaluated. METHODS: A serological reference panel of 50 positive and 100 negative plasma specimens was developed from SARS-CoV-2 PCR and antibody positive patients and pre-pandemic SARS-CoV-2-negative specimens collected in 2016. Test performance of the 25 RDTs was evaluated against this panel. RESULTS: A total of 10 RDTs had a sensitivity ≥98%, while 13 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Four RDTs (Boson, MultiG, Standard Q, and VivaDiag) had both sensitivity and specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Only three RDTs had a sensitivity ≥98%, while 10 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgM antibodies. Three RDTs (Autobio, MultiG, and Standard Q) had sensitivity and specificity ≥98% to combined IgG/IgM. The RDTs that performed well also had perfect or almost perfect inter-reader agreement. CONCLUSIONS: This evaluation identified three RDTs with a sensitivity and specificity to IgM/IgG antibodies of ≥98% with the potential for widespread antibody testing in Uganda.


Subject(s)
COVID-19 , SARS-CoV-2 , Academies and Institutes , Antibodies, Viral , Diagnostic Tests, Routine , Humans , Immunoglobulin M , Sensitivity and Specificity , Uganda/epidemiology
12.
Emerg Infect Dis ; 27(12): 3133-3136, 2021 12.
Article in English | MEDLINE | ID: covidwho-1496965

ABSTRACT

As the coronavirus pandemic continues, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data are required to inform vaccine efforts. We provide SARS-CoV-2 sequence data from South Sudan and document the dominance of SARS-CoV-2 lineage B.1.525 (Eta variant) during the country's second wave of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , South Sudan/epidemiology
13.
Virus Evol ; 7(2): veab067, 2021.
Article in English | MEDLINE | ID: covidwho-1412092

ABSTRACT

Defining the unique properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein sequences has potential to explain the range of Coronavirus Disease 2019 severity. To achieve this we compared proteins encoded by all Sarbecoviruses using profile Hidden Markov Model similarities to identify protein features unique to SARS-CoV-2. Consistent with previous reports, a small set of bat- and pangolin-derived Sarbecoviruses show the greatest similarity to SARS-CoV-2 but are unlikely to be the direct source of SARS-CoV-2. Three proteins (nsp3, spike, and orf9) showed regions differing between the bat Sarbecoviruses and SARS-CoV-2 and indicate virus protein features that might have evolved to support human infection and/or transmission. Spike analysis identified all regions of the protein that have tolerated change and revealed that the current SARS-CoV-2 variants of concern have sampled only a fraction (∼31 per cent) of the possible spike domain changes which have occurred historically in Sarbecovirus evolution. This result emphasises the evolvability of these coronaviruses and the potential for further change in virus replication and transmission properties over the coming years.

14.
Nat Microbiol ; 6(8): 1094-1101, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294473

ABSTRACT

Here, we report SARS-CoV-2 genomic surveillance from March 2020 until January 2021 in Uganda, a landlocked East African country with a population of approximately 40 million people. We report 322 full SARS-CoV-2 genomes from 39,424 reported SARS-CoV-2 infections, thus representing 0.8% of the reported cases. Phylogenetic analyses of these sequences revealed the emergence of lineage A.23.1 from lineage A.23. Lineage A.23.1 represented 88% of the genomes observed in December 2020, then 100% of the genomes observed in January 2021. The A.23.1 lineage was also reported in 26 other countries. Although the precise changes in A.23.1 differ from those reported in the first three SARS-CoV-2 variants of concern (VOCs), the A.23.1 spike-protein-coding region has changes similar to VOCs including a change at position 613, a change in the furin cleavage site that extends the basic amino acid motif and multiple changes in the immunogenic N-terminal domain. In addition, the A.23.1 lineage has changes in non-spike proteins including nsp6, ORF8 and ORF9 that are also altered in other VOCs. The clinical impact of the A.23.1 variant is not yet clear and it has not been designated as a VOC. However, our findings of emergence and spread of this variant indicate that careful monitoring of this variant, together with assessment of the consequences of the spike protein changes for COVID-19 vaccine performance, are advisable.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Motifs , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , Phylogeny , Uganda/epidemiology , Viral Proteins/genetics
15.
Virus Evol ; 7(1): veab006, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1069316

ABSTRACT

As the world is struggling to control the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there is an urgency to develop effective control measures. Essential information is encoded in the virus genome sequence with accurate and complete SARS-CoV-2 sequences essential for tracking the movement and evolution of the virus and for guiding efforts to develop vaccines and antiviral drugs. While there is unprecedented SARS-CoV-2 sequencing efforts globally, approximately 19 to 43 per cent of the genomes generated monthly are gapped, reducing their information content. The current study documents the genome gap frequencies and their positions in the currently available data and provides an alternative primer set and a sequencing scheme to help improve the quality and coverage of the genomes.

16.
Int J Infect Dis ; 104: 282-286, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-898982

ABSTRACT

OBJECTIVES: There is a high demand for SARS-CoV-2 testing to identify COVID-19 cases. Real-time quantitative PCR (qRT-PCR) is the recommended diagnostic test but a number of constraints prevent its widespread implementation, including cost. The aim of this study was to evaluate a low cost and easy to use rapid antigen test for diagnosing COVID-19 at the point of care. METHODS: Nasopharyngeal swabs from suspected COVID-19 cases and low-risk volunteers were tested with the STANDARD Q COVID-19 Ag Test and the results were compared with the qRT-PCR results. RESULTS: In total, 262 samples were collected, including 90 qRT-PCR positives. The majority of samples were from males (89%) with a mean age of 34 years and only 13 (14%) of the positives were mildly symptomatic. The sensitivity and specificity of the antigen test were 70.0% (95% confidence interval (CI): 60-79) and 92% (95% CI: 87-96), respectively, and the diagnostic accuracy was 84% (95% CI: 79-88). The antigen test was more likely to be positive for samples with qRT-PCR Ct values ≤29, with a sensitivity of 92%. CONCLUSIONS: The STANDARD Q COVID-19 Ag Test performed less than optimally in this evaluation. However, the test may still have an important role to play early in infection when timely access to molecular testing is not available but the results should be confirmed by qRT-PCR.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Adult , COVID-19/virology , Female , Humans , Male , Nasopharynx/virology , Point-of-Care Systems , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Uganda
17.
Emerg Infect Dis ; 26(10): 2411-2415, 2020 10.
Article in English | MEDLINE | ID: covidwho-625963

ABSTRACT

We established rapid local viral sequencing to document the genomic diversity of severe acute respiratory syndrome coronavirus 2 entering Uganda. Virus lineages closely followed the travel origins of infected persons. Our sequence data provide an important baseline for tracking any further transmission of the virus throughout the country and region.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Air Travel , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Genetic Variation , Genome , Health Policy , Humans , Mass Screening , Motor Vehicles , Phylogeography , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Quarantine , SARS-CoV-2 , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL